ECO 330: Economics of Development

Jack Rossbach Spring 2016 Suppose we observe a relationship between two variables. How do we know if it's causal?

- Lab experiments
- Randomized Assignment
- Natural Experiments
- Instrumental Variable

Suppose we have 1000 observations generated by the following system of equations

$$Z_{i} = \epsilon_{i}^{Z}$$
$$U_{i} = \epsilon_{i}^{U}$$
$$X_{i} = 0.75 \times Z_{i} + 2 \times U_{i} + \epsilon_{i}^{X}$$
$$Y_{i} = 0.5 \times X_{i} - 4 \times U_{i} + \epsilon_{i}^{Y}$$

Where ϵ_i^Z , ϵ_i^U , ϵ_i^X , ϵ_i^Y are all <u>iid</u> standard normal random variables.

STATA: [1] set obs 1000 [2] gen z = rnormal(0,1) [3] gen u = rnormal(0,1) [4] gen x = rnormal(0,1)+.75*z + 2*u [5] gen y = rnormal(0,1) -4*u + .5*x

Challenge: Determining Relationship between X and Y

There is a positive causal relationship between X and Y by construction. Graphically:

- However, U affects both X and Y. It increases X while decreasing Y.
- U is a confounding factor. If we don't include U in our regression, it is an omitted variable
- If we don't have data on U, our estimated coefficient of X will be badly biased. In this case, it is biased enough to make it look like X decreases Y

Scatter Plot between X and Y

STATA: twoway scatter y x

Simple Regression between X and Y

There is a positive causal relationship between X and Y by construction

- If we run a simple regression, $Y_i = \alpha + \beta X + \epsilon_i$, our estimated β coefficient is negative and significant. STATA: **reg y x** (case sensitive, in code I stick with lower case)
- We know this is wrong in a causal sense, since β should be 0.5 by construction.
- If we include data on U in regression, everything works out fine. STATA: reg y x u

Instrumental Variable (IV) Approach

There is a positive causal relationship between X and Y by construction

- What if we lack data on U? Can still use Instrumental Variable approach.
- Z affects X and therefore affects Y only through its effect on X. We can Z as an IV for X.
- It is important Z does not have a direct effect on Y, this is called the exclusion restriction.

There is a positive causal relationship between X and Y by construction

The IV Regression is three steps:

- 1. Regress X on Z (i.e. $X_i = \alpha + \beta Z_i + \epsilon_i$). STATA: **reg x z**
- 2. Use regression to predict values of X for each value of Z ($\hat{X}_i = \alpha + \beta Z_i$). STATA: predict xpred if e(sample) [have to have above be most recent regression run]
- 3. Regress Y on \hat{X} (i.e. $Y_i = \alpha + \beta \hat{X}_i + \epsilon$) instead of on X. STATA: **reg Y X**

There is a positive causal relationship between X and Y by construction

When we do the IV approach, we find a estimated coefficient near 0.5. So the IV approach successfully recovers the causal relationship between X and Y, even without data on U.

• It's not necessary to do all three steps by hand. What we did is called 2SLS (Two Stage Least Squares Regression). STATA: **ivregress 2sls y (x=z)**

We use Settler Mortality as an IV for whether institutions are inclusive or extractive

• High Settler mortality reduced the likelihood and feasibility of colonizers setting up inclusive institutions.

We discussed one in context of geography and how city shape affects city outcomes.

• Harari (2015) used Potential City Shape (water/mountains/etc affect whether city can be compact) as an IV for Actual City Shape.

Angrist and Krueger (1991) used Birth Quarter to study affects of Education on Wages

• Can't drop out until 16 years old. School starts in August/September, depending when birthday is affects how many more months you need to stay in school.

<u>Aizer and Doyle (2015)</u> use Judge Assignment as IV for Juvenile Incarceration

 Judge assignment is random, judges differ in how much they favor incarceration on average. That affects whether people are incarcerated. Find juvenile incarceration has long term negative impact on wages, education, and recidivism/adult incarceration.

 $Y_i = \alpha + \beta X_i + \epsilon_i$

. reg y x

Number of Observations in Regression (Observations with missing data are excluded)

	Source	SS	df	MS	Number of obs =	1000	
	Model	4631 8089	1	4631 8089	F(1, 998) =	892.05	
	Residual	5181.91594	998	5.19230055	R-squared =	0.4720	Coefficient of
-					Adj R-squared =	0.4714	¹ Determination
	Total	9813.72485	999	9.82354839	Root MSE =	2.2787	

if < 0.05)

Standard Error: Used to P Value and Confidence Interval

У	Coef.	Std. Err.	t	P> t		[95% Conf.	Interval]
x _cons	9328223 .0249781	.0312323 .0720646	-29.87 0.35	0.000 0.729		9941108 1164374	8715339 .1663937
Est Ŷ =	P Value (Statistically Significant			Confidence Interval (Statistically Significant if excludes zero)			